
Partners

Wormhole Learning can be generalized into three steps. We first start

with a RGB detector pre-trained on daytime data only; given a stream

of paired sensor data, we then train the infrared detector based on the

RGB-inferred labels. In a second step, we exploit the inherent

invariance of the infrared sensor to scaling of ambient illumination and

are thus able to infer labels at night. In the last step, the sensors

switch roles and we perform transfer learning back to the RGB

domain. The re-trained RGB detector now has enlarged its operating

domain by partly inheriting the auxiliary sensor’s invariance to

illumination; in particular, the RGB detector is able to perform much

better at difficult lightning situation as such at night.

We empirically validate the concept of wormhole learning in an

experiment on the KAIST multi-spectral dataset [1]. A synchronous

stream of RGB and IR images is provided along a split between daytime

(D) and night (N) data. A pre-trained Faster-RCNN network [3] using the

NASnet architecture [4] is employed in order to generate ground-truth

data for the initial training set at daytime. Furthermore, for each domain

transfer step we started from the same checkpoint of a single shot

detector architecture pre-trained on the COCO [5] dataset. We included

6 object classes in our detection task, namely car, person, bus, truck,

motorcycle and bicycle.

We observe in Table 1, that the IR detector trained using labels inferred

from the original RGB detector performs worse at daytime, but excels at

night due to its approximate invariance to ambient lighting. The 4th

column shows the effect of wormhole learning as the re-trained RGB

detector has gained a huge relative performance boost at night, while

operating slightly worse at day.
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4 Results and discussion

Fig. 1. A wormhole can be created in the operating domain of a sensor leveraging the inherent invariance of another

auxiliary sensor—in this case invariance to illumination of an IR camera. Starting with an object detector trained only

with daytime data we enlarge its capabilities to also include night time thanks to the temporary addition of an IR camera.

The night-day wormhole is created from three steps:

1) Transfer learning from RGB camera to IR at daytime.

2) Exploiting the invariance of IR camera with respect to time of the day.

3) Transfer learning back from IR to RGB at night.

Table 1

Detection performance in mAP@0.5IoU

Testset environment RGB (D) IR RGB (D+N) Relative Gain

day 43.7 22.4 41.6 -5.0%

night 13.4 31.2 20.3 +51.2%

5 Conclusion

We introduced Wormhole Learning as a novel way of leveraging the

mutual information between a main and an auxiliary sensor to enlarge

the operating domain of the former via semi-supervised learning.

Furthermore, this provides a simple way of generating "unlimited"

labeled data at no cost. Crucially, we showed that invariance to

undesired changes in data of the auxiliary sensor can be exploited to

improve learning outcomes for the first sensor.
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3 Technical Insights

We define the wormhole gain as the difference in cross-entropy for the

detector before (𝑞𝜃𝑅𝐺𝐵
𝐷 ) and after (𝑞𝜃𝑅𝐺𝐵

𝐷+𝑁) the wormhole learning with

respect to an unobservable underlying distribution: the ground-truth

relative to the scene (𝑝 ത𝑌)

WG𝑅𝐺𝐵→𝐼𝑅
𝐷+𝑁 = 𝔼𝒟𝐷+𝑁 𝐻 𝑝 ത𝑌, 𝑞𝜃𝑅𝐺𝐵

𝐷 Y|Z𝑅𝐺𝐵 −𝐻 𝑝 ത𝑌, 𝑞𝜃𝑅𝐺𝐵
𝐷+𝑁 Y|Z𝑅𝐺𝐵 ,

where as 𝑌 denotes the inferred label by an object detector

parameterized as 𝜃 and 𝑍 depicts the representation of a scene as

captured in one sensor’s modality.

Moreover, defining a Jaccard similarity index for two sensors as

𝐽𝑅𝐺𝐵,𝐼𝑅 =
𝐼(𝑍𝑅𝐺𝐵; 𝑍𝐼𝑅)

𝐻(𝑍𝑅𝐺𝐵 , 𝑍𝐼𝑅)
, 0 ≤ 𝐽𝑅𝐺𝐵,𝐼𝑅 ≤ 1

we show that wormhole learning to be successful requires the sensors

to be neither «too orthogonal» ( 𝐽𝑅𝐺𝐵,𝐼𝑅 = 0 ) nor «too similar»

(𝐽𝑅𝐺𝐵,𝐼𝑅 = 1). The interested reader is kindly referred to [2] for the

details.

1 Introduction

Typically, to enlarge the operating domain of an object detector, more

labeled training data is required. We introduce a novel method called

Wormhole Learning, which allows to extend the operating domain

without additional labeled data, but only with temporary access to an

auxiliary sensor with certain invariance properties. We showcase the

instantiation of this principle with a regular visible-light RGB camera as

the main sensor, and an infrared sensor as the temporary auxiliary

sensor.

2 Method overview

Fig. 2.  After wormhole learning (right) we learned to recognize cars only from the headlights.

Fig. 3. Recall-precision curves for category car. In blue the detector before WHL, in orange the detector after WHL.

We can appreciate a significant improvement in performance at night (right panel), while maintaining comparable

performance during day (left panel). In particular, one could speculate that we increased performance at high recall

because we learned a whole new set of representations for the object category (cf. Fig. 3).


