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4 RGB- Neuromorphic Results

Fig. 1. The principle of wormhole learning is illustrated.

It begins with a detector that works only in a limited region of the operating environment, in this case, the bottom left circle (RGB

detector at day time). The ultimate goal is to make it more robust with respect to a certain nuisance, hence, expanding its

operating envelope. In this case, the nuisance is the ambient illumination. The goal is achieved in a completely automated

fashion with the temporary addition of an auxiliary sensor. In the following the three key points are presented:

1. Starting from the bottom left, transfer learning is applied to learn a detector in the auxiliary domain. As training labels we adopt

the inferences generated by the RGB detector. The result is an even-based object detector.

2. From there, the inherent invariance of the new domain to the specific nuisance of illumination allows us to “travel” across

the operating domain. The event-based object detector is now able to perform inference also at night.

3. In the final step the student becomes the teacher, and symmetrically to step one, we retrain the RGB detector at daytime from

the event-based inferred labels at night. We can now remove the auxiliary sensor and we are left with an RGB detector that

works both at day and night.

In order to cope with sensors that are radically different, such as RGB cameras and event-based neuromorphic sensors, we need a

more careful selection of which samples to transfer. Thus we design “cross-modal learning filters” which represents a first

step in the relatively unexplored territory of multi-modal observability.

Table 1

Detection performance in mAP@0.5IoU

Testset RGB (D) Event-

based 

RGB 

(D+N) 

Relative 

Gain

Day (D) 59.1 26.2 58.1 -2%

Night (N) 32.2 16.2 41.5 +29%
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3 Cross-Modal Filters

Wormhole Learning Algorithm recap:
1) Obtain samples 𝑧 in a domain where the initial detector p(Y|𝑍𝑎) is accurate

2) Use 𝑧𝑎
𝑘 to generate the labels 𝑦𝑘 from the initial detector

3) Use the pair 𝑧𝑏
𝑘 , 𝑦𝑘 to learn p(Y|𝑍𝑏)

4) Once p(Y|𝑍𝑏) is learned we proceed in reverse in the new domain

We generalize the wormhole learning algorithm by introducing 

cross-modal learning filters (XLFs), which are functions of the type:

𝑥𝑙𝑓𝑎→𝑏: 𝑍𝑎 × 𝑍𝑏 × 𝑌 → 𝐵𝑜𝑜𝑙

1 Introduction

The technique of “wormhole learning” [1] shows that even temporary

access to a different sensor with complementary invariance

characteristics can be used to enlarge the operating domain of an

existing object detector without the use of additional training data.

2 Wormhole Learning

Fig. 5. Recall-precision curves for category car and person. In blue the detector after WHL, in orange the detector before WHL.

For cars we can appreciate a significant improvement in performance at night that exceeds the 95% confidence bound

(dashed-line). On the other hand, persons do not exhibit an equally remarkable improvement, we could speculate that the

representation of a car changes more when switching from day to night than a person which does not exhibit new features such as

headlights and shimmering lights.
Multi-modal 

observability!

𝐩(𝐘|𝒁𝒃)
≠

𝐩(𝐘|𝒁𝒂)

Fig. 2 Given a detection in one

domain, cross-modal filters tell us

whether or not that label should be

used as training sample for the

other domain. Note that this is not

the same as a detector since it is

conditioned on having had a

detection on one sensor. Graphically,

among the four mutually exclusive

cases we are reconstructing the

decision boundary only between region

B and C.

Fig. 3. To compute a cross-modal filter between RGB and event-based camera it is sufficient to check whether or not the

generation model for the two sensors is respected. Events are expected to appear at edge location and vice-versa. Thus, we

introduce an edge overlap score (𝑺𝒆𝒐) to quantify how much the two models are fulfilled. This can be consider a proxy

evaluating how much the objects are observable in both domains. In the figure above the gradient of the RGB image is

pointwise compared with the events’ activity.

Hence, we have 𝒙𝒍𝒇𝒂→𝒃 = 𝑺𝒆𝒐 > 𝑺𝒆𝒐 where 𝑺𝒆𝒐 =
σ𝑩𝑶𝑿 𝑰𝑬𝑩 ||𝜵𝑰𝑹𝑮𝑩||

σ𝑩𝑶𝑿 ||𝜵𝑰𝑹𝑮𝑩||

Table 2

Detection performance of event-based detector as a 

function of the XLF threshold [mAP@0.5IoU]

Testset None Low threshold High 

threshold

Day 20.5 26.2(+27.5%) 22.5(+9.4%)

Night 8.23 16.2(+97.1%) 18.6(+126%)

• Same pattern observed in [1] with

RGB-IR, we compromise a bit of

performance at day (-2%) to

significantly improve at night

(+29%).

• We observe a positive gain in spite

of the middle modality being not

particularly apt to the task.

• Tab. 2 shows the effectiveness of

XLF for the first transfer learning

step. Instead, we did not experience

particular need for any filter when

going from events to RGB.

Legend:

Data      𝑍
Task   𝑌
Sensor   𝑎, 𝑏

These results on wormhole learning show that there are many creative

ways to combine the data from heterogeneous sensors, and an

additional sensor can be useful, even if you only have it during training, and

even if it is not particularly good at the task at hand, or, equivalently, even if

we do not know how to use it well for the task at hand.

The results suggest that we are still in the early days of multi-modal

perception and many questions are still to be answered.

Fig. 4. On the left the effect of XLF with low threshold, on the right with high threshold. Increasing the threshold progressively

removes objects that appear less observable.


