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Abstract— Typically, to enlarge the operating domain of an
object detector, more labeled training data is required. We
describe a method called wormhole learning, which allows
to extend the operating domain without additional data, but
only with temporary access to an auxiliary sensor with certain
invariance properties.

We describe the instantiation of this principle with a regular
visible-light RGB camera as the main sensor, and an infrared
sensor as the temporary sensor. We start with a pre-trained
RGB detector; then we train the infrared detector based on
the RGB-inferred labels; finally we re-train the RGB detector
based on the infrared-inferred labels. After these two transfer-
learning steps, the RGB detector has enlarged its operating
domain by inheriting part of the invariance to illumination of
the infrared sensor; in particular, the RGB detector is now able
to see much better at night.

We analyze the wormhole learning phenomenon by bounding
the possible gain in accuracy using mutual information prop-
erties of the two sensors and considered operating domain.

I. INTRODUCTION

A distinctive feature of humans is the ability to trans-
fer knowledge across different sensory inputs. Famously
Beethoven and other famous composers continued to write
music while being deaf, suggesting that they were able to
transfer some previously acquired auditory skills to the visual
domain [1]. In pioneering experiments summarized in [2],
Erismann and Kohler devised studies in which participants
wore special mirror goggles which distort the visual field of the
wearer, e.g. by flipping their visual field upside down. They
discovered that humans are remarkably adept at adjusting to
such distortions by relying on their other senses to the point
that after a few days their perception returns to “normal"
even when wearing the upside-down goggles.

In this work, we likewise focus on the ability to employ
transfer learning across heterogeneous sensors by exploiting
their inherent symmetry characteristics. Our main contribution
is the conception and execution of wormhole learning
visualized in Fig. 1, which can be regarded as a type of semi-
supervised learning that leverages sensory and algorithmic
symmetries. Most notably we are able to augment the original
operating domain of an algorithm by retraining it based on
information obtained in a different sensor space, as illustrated
in Fig. 2. We analyze when and why wormhole learning
is possible, with implications concerning in which domains
transfer learning across sensors is possible.

Experimentally, we demonstrate that, from a pretrained
object detector for regular RGB-images, it is possible to train
an object detector on long wave infrared (IR) data using a
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Fig. 1. A wormhole can be created in the operating domain of a sensor
leveraging the inherent invariance of another auxiliary sensor—in this case
invariance to illumination of an IR camera. Starting with an object detector
trained only with daytime data we enlarge its capabilities to also include
night time thanks to the temporary addition of an IR camera. The night-day
wormhole is created from three steps: 1) Transfer learning from RGB camera
to IR at daytime. 2) Exploiting the invariance of IR camera with respect to
time of the day. 3) Transfer learning back from IR to RGB at night.

(a) Before wormhole learning (b) After wormhole learning

Fig. 2. Despite starting only with daytime data, and no additional labels,
the wormhole-enhanced RGB detector has improved performance at night.
For example, we observe that the detector has learned to recognize cars by
their blinding lights (not present at all at daytime).

joint-sensor setup (first transfer step in Fig. 1). Exploiting the
illumination invariance of the IR camera, the IR object detector
is then used to reliably label data in previously challenging
lighting conditions at night (invariance step in Fig. 1). This
is then used to retrain the RGB object detector with both
labeled night and day data (second transfer step in Fig. 1),
effectively augmenting its original operating envelope.

Thus wormhole learning is a novel method of bootstrapping
the training of new sensors and most importantly generating
"labeled" data in a new domain "without cost", serving as
a stepping stone to more robustness and performance. We
will show that the method is most useful in setups where
an agent has access to heterogenous sensors that have some
complementary invariant properties, such as the self-driving
domain.



II. RELATED WORK

Due to the various elements involved in wormhole learning,
the present work touches upon three topics: multi-modal
perception, transfer learning and semi-supervised learning.

1) Multi-modal perception: Oftentimes, multi-sensor setups
are used to increase robustness or performance via sensor
fusion [3]. In recent works, diverse sensor readings are
oftentimes joined together using Neural Networks (NNs) such
as performed for robotic multi-sensor fusion [4]. Moreover, the
range of such applications spans from improved detection and
tracking [5] to better prediction for successful grasping [6].

While complementarity and fusion are necessary for robust-
ness, many works have focused on overlap and correlation be-
tween different sensing modalities. In [7], a retrieval algorithm
to find correspondences between text and images is presented.
Also generative adversarial networks (GANs) [8] have been
recently used to learn cross-domain relationships [9] showing
the ability to transfer style between different objects types,
to synthesize images based on text [10] and to learn joint
distributions over multi-domain images [11].

2) Transfer learning: Transfer learning is commonly
interpreted as the ability to adapt learning across different
distributions of data [12]. A large body of research has
developed around applications of transfer learning for multiple
tasks [13], [14] which include, but are not limited to, learning
to play multiple Atari games [15] using the same parameters,
machine translation trained on diverse language pairs which
can be tested and generalized to previously unseen language
pairs [16], and performing diverse robotic tasks using modular
neural networks [17]. Transferring one domain to another,
recently CycleGANs [18] were proposed as a way to, for
example, transfer a summertime picture to winter [19] while
another approach [20] was used to restore image quality
in underexposed images. All these methods aim to exploit
insights learned from the training distribution to augment
their capabilities in a different target domain.

3) Semi- and self-supervised learning: Semi- and self-
supervised learning is frequently employed to bypass the
need for data labeling due to cost or difficulty in the labeling
process. A range of examples include semi-supervised object
recognition [21], robust tracking [22], and many more [23].
Self-supervised learning has been similarly effective, for
instance in road detection [24], robotic terrain traversal cost
prediction [25] and robot grasping [26].

In comparison, wormhole learning is a semi-supervised
learning technique which hinges upon temporary access to
an additional sensor which has complementary invariance
properties compared to the first sensor. We will clarify when
and how wormhole learning is possible, possibly providing
valuable lessons for semi-supervised, self-supervised and
transfer learning.

III. PROBLEM FORMALIZATION

The general problem we are addressing in this work is to
enlarge the domain of a learned mapping from data to a task
embedding to a new operating domain. In our particular case,
we aim to show how this is possible by employing a temporary

auxiliary sensor. The ensuing mathematical formalization
takes inspiration from [27]–[29].

a) Scene to data: We characterize a sensor ζ as a
mapping z (·) from a scene x ∈ X to its data representation
z ∈ Z. Note that X will be used interchangeably as random
variable (RV), but also, to simply indicate a set of scenes,
the context will make it clear.

b) Task: From a given sample of data z, “accomplishing
a task” [30] refers to the ability to infer the corresponding
label y ∈ Y. While in other works [27]–[29] the Markov
chain x → z → y reads data → representation → task, in
our multi-sensor setting it refers to scene → data → task.

c) Nuisance: A nuisance ν for a task is a RV which
affects the scene but is independent of the task, i.e. I (ν; Y) =
0, where I (·; ·) denotes the mutual information. We consider
the task of object detection which encompasses recognition
and localization of predetermined classes on the image plane.
Note that common nuisances such as translation and rotation
are not actual disturbances in our case due to the required
localization. In this work though, we take into account the
changes in illumination that will be simplified to daytime vs.
night (D/N can be seen as a RV affecting the data).

To facilitate further reading we summarize the necessary
elements to describe wormhole learning in Tab. I.

TABLE I
SUMMARY OF NOTATION ADOPTED IN WORMHOLE LEARNING

Symbol Meaning

z (·) : X→ Z Sensor projection of the scene to data.
Y True label distribution independent of

the sensor corresponding only to X.
Z

D/N
RGB/IR Data distribution given

day/night from RGB/IR camera.
z 7→ fθ(z) Detector, e.g. neural network,

trained to learn p(Y|Z).
θ, ψ Detector parameter distributions trained

on Z
D/N

RGB/IR and associated labels.
Y

D/N
RGB/IR Task/label RV associated to the learned

distribution f
θ

D/N
RGB/IR

:= q(Y|Z, θD/N
RGB/IR).

A. Segmentation of the scene space

The transfer learning steps in wormhole learning force us
to closely consider the overlaps of sensor representations and
their correlation with the task. We first define the concept
of operating domain mathematically, then dive into a more
detailed description of Fig. 3.

Definition 1 (Potential operating domain). Let ζ be a fixed
sensor and Y a fixed task. We denote by x ∈ X a subset of
the scene space. Hence, z = z (x) ∀x ∈ (X). We define the
potential operating domain of ζ relative to Y as

ODδ(ζ,Y) =
{
x ∈ X s.t. I(z (x); Y) > δ

}
,

where δ > 0 is a desirable lower bound to the mutual
information between data and the task.
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Fig. 3. We segment the space of all possible scenes into the operating domain of an RGB (ODRGB) and an IR (ODIR) camera. Relative to the task of
object detection this reads “observable” objects in the images (Cf. Definition 1). We consider the dark yellow region (i.e. 3 ∪ 2) to be the subset where we
sampled the initial daytime-only data. Region 3, contoured with dashed red, depicts the transfer learning region where we aim to train the IR detector.
Thanks to its approximate invariance to the illumination acting on the scene space, we also gain, without cost, the scenes in 4 and 5 including the entire
equivalence class. The last learning step of the wormhole (IR to RGB) allows us to actually expand the initial operating envelope by including region 4.
For completeness, 1 is equivalent to 2 with difficult lighting condition for the RGB domain, where the object exists but its representation has not been
learned by the network. Region 6 in turn can be interpreted as objects that are not of interest for our detector (e.g. a horse), while 7 depicts the region
corresponding to region 1 for ODIR .
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generate labels at night, which are transferred back to ODRGB . 3) Wormhole loop is closed by retraining the original network with day-time and night-time
data from the IR network.

YD
RGB YD

IRθD
RGB ψD

IR YN
IR YN

RGB θN
RGBYD

train

ZD
trainY ZD

IR ZN
IRZD

RGB ZN
RGB

X

(B1) (B2)(A1) (A2)

Pretrain

TLD TLNInv.

Fig. 5. Bayesian diagram of wormhole learning process. Gray denotes observable distributions. White circles refer to unobservable latent distributions. The
processes (A) denote the transfer of the data distribution due to approximate invariance of the change in input distribution. The processes (B) represent the
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RGB has been pretrained on another dataset denoted by subscript "train".



B. Sensor properties

Nuisances acting on a scene can either have the structure of
a group, and they are invertible, or can be non-invertible (e.g.
occlusion). For simplicity, assume the illumination nuisance
affecting the operating domain to have the form of a group.
For the auxiliary IR camera, temperature is a nuisance which
however does not generally affect regular cameras.

The operating domain is then visualized in Fig. 3 as a
cross section of the scene space parallel to the group orbits
generated by the illumination nuisance. The blue and yellow
regions in Fig. 3 are an idealized depiction of these areas for
IR and RGB camera relative to the object detection task. They
represent an operating envelope, i.e. a subset of all possible
scenes, for which the sensor generates data with “enough”
information to solve the task.

While it is useful to illustrate the invariance as orbits of
a group action, we do not need this condition, as later we
define the invariance as the mutual information among the
data conditioned on specific values of a nuisance variable. In
the RGB/IR setup, the invariance holds exactly only locally.
For example, the scaling of illumination is highly dependent
on the time of day, which induces second order effects also
in the infrared domain (e.g. temperature of the ambient is
correlated to the time of the day).

IV. RGB/IR PIPELINE

We empirically validate the concept of wormhole learning
on the KAIST multi-spectral dataset [31]. A synchronous
stream of RGB and IR images is provided along a split
between daytime (D) and night (N) data.

In order to generate the ground-truth labels for the initial
daytime training and testing set, we adopted a pretrained
Faster-RCNN network1 using the NASnet architecture [32].

For reliable object detection at night, data annotations were
obtained by hand-labeling a subset of the night test set. We
sampled 1 out of every 7 images totaling 2281 test samples at
night (Cf. Tab. IV-A for details on objects categories). Note
that not a single label was used for night training, since they
are automatically generated through semi-supervised transfer
learning from and to the IR camera.

A. Networks

For each wormhole learning step in Fig. 4, we start training
from the same checkpoint of a Single Shot Detector network
(SSD) pretrained on COCO [33] incorporating the Inception
V2 module [34]. All training sessions were carried out
with a batch size of 32, RMSprop optimizer with initial
learning rate of 6 ∗ 10−3, momentum of β = 0.9, and an
exponential decay factor of 0.95 after 60k steps. Additionally
we applied standard data augmentation techniques [35]
to increase robustness and limit overfitting; these include:
random horizontal flips, random crops and random scaling
in brightness and contrast. These lasts techniques have to
be considered small and local with respect to the general
changes in illumination.

1Faster-RCNN is available as part of the Tensorflow model zoo on Github.

Finally, all the evaluations have been carried out following
the PASCAL VOC best practice guidelines [36]. This implies
a standard 0.5 IoU score for a positive match and counting
multiple detections of the same object as false positives. For
more comprehensive details, code and model files for this
paper will be made available via Github.

TABLE II
NUMBER OF OBJECTS IN THE DATASETS

Dataset Car Person Bus Truck Moto. Bicycle

Train Day 132190 42302 4430 2212 6559 26721
Train Daya 116907 37465 4279 1568 3952 17585
Train Nightb 27782 9213 204 11 0 24

Test Day 150960 54219 2733 2067 493 174
Test Nightc 4400 2254 230 1085 31 7

a generated by RGB detector
b generated by IR detector
c hand-labeled with labelImg [37].

B. Step 1: Training of a daytime only RGB object detector

As displayed in Fig. 4, an initial network θD
RGB is trained

using ground-truth data YD
train for day-time only RGB images.

We then deploy θD
RGB to generate inferred labels YD

RGB that
are transferred to YD

IR: we now have labels to train an IR
detector.

C. Step 2: Training of an IR object detector

An auxiliary network ψDIR is trained by feeding YD
IR and

ZD
IR, which, upon completion, is able to detect objects in the

IR domain. In a further step, we deploy the trained auxiliary
network ψDIR on IR night data ZN

IR to generate YN
IR which are

transferred to YN
RGB.

D. Step 3: Training of a day & night RGB object detector

In this last step, we close the wormhole loop. Yet another
network θD+N

RGB is trained using joint label data YD
RGB,Y

N
RGB

and input data ZD
RGB,Z

N
RGB which yields θD+N

RGB .

E. Results

In the following we consider the object detection results
detailed in Tab. III and IV.

The first two rows of Tab. III show that the initial RGB
detector behaves well at day-time, but loses substantially in
performance at night as highlighted by the mean average
precision (mAP). After the first transfer learning, we observe
in the 3rd row, that the IR detector underperforms at daytime
for bicycles, motorcycles, trucks, and persons. We ascribe
this to a low “observability" of these categories at daytime
in the IR domain (i.e. they belong to region 2 in Fig. 3).
Surprisingly, traveling along the IR invariance improves the
performance as apparent from the 4th row.

Empirically we observed that the time of the day induces
second order effects in the IR domain (e.g. environment
temperature) and cannot be regarded as an illumination change
decoupled from the rest of the scene. The result is that it
enhances the contrast at night leading to a better discriminative



TABLE III
DETECTION PERFORMANCE COMPARISON FOR EACH CLASS. IMPROVED VALUES ARE MARKED IN BOLD

Network Testset Car Person Bus Truck Motorcycle Bicycle mAP

1 RGB
(Day Only)

Day 75.86 42.90 66.89 18.77 37.41 20.53 43.74
Night 44.48 21.36 13.66 0.87 0.03 0.02 13.40

2 IRa Day 57.85 17.69 52.06 5.48 0.33 1.20 22.44
Night 67.18 44.86 43.34 18.66 13.18 0.00 31.20

3 RGBb

(Day+Night)
Day 75.81 38.95 63.64 15.80 40.55 14.53 41.55
Night 65.77 25.24 30.53 0.00 0.00 0.00 20.26

a Network trained on labeled data generated with a retrieval threshold of 0.35
b Network trained on labeled data generated with a retrieval threshold of 0.50

TABLE IV
CONFIDENCE THRESHOLD EFFECTS ON SEMI-SUPERVISED TRANSFER LEARNING (MAP@.5)

Testset 1(RGBnet) 1 → 2 (IR net) 2 → 3 (RGB net)

0.5 0.15 0.35 a 0.5 0.65 0.15 0.35 0.5 0.65

day 43.7 16.1 22.4 21.8 18.4 40.7 (-6.92%) 42.0 (-3.98%) 41.6 (-5.00%) 35.5 (-18.8%)
night 13.4 24.6 31.2 30.1 25.3 20.5 (+53.2%) 19.2 (+43.4%) 20.3 (+51.2%) 16.4 (+22.2%)
a Only this network has been deployed in the subsequent step (2 → 3).

power. Interpreting these results (3rd vs. 4th row), we indeed
observe that the IR object detector is able to gracefully bridge
the difference between night and day allowing the retraining
of the RGB detector at night.

Subsequent to the last step, the last two rows show the
results of the wormhole learning. The retrained RGB detector
operates significantly better than the original at night (+51.2%)
however loses slightly in performance during the day (-5.0%).

We finally want to remark, that this process in general does
not put any limit on the size of the new training sets since
labels are generated in a semi-supervised way at no labeling
cost. This could also overcome the inherent imbalance of
categories (Cf. Tab. IV-A), that was present in [31] which
in turn leads to poor performance on rare object classes.
Also note, that we did not counter-act the imbalance by, e.g.,
super-sampling rare class objects.

Many theoretical questions arise from this new concept of
wormhole learning. Fig. 3 already suggests that the concept
of observability as information that correlates with the task
across different domains is still lacking. This becomes a
riddle when one has to choose a retrieval threshold for
semi-supervised learning. In Tab. IV we present the results
obtained generating labels with four different thresholds. Up
to the stochastic behavior of the training process it seems
that passing more information helps.

V. ANALYSIS OF WORMHOLE LEARNING

We introduce the “wormhole gain” as a possible measure of
the performance gain of using wormhole learning. Connected
to this, we find nontrivial results; e.g., it turns out that the
sensors must be different, but not too different.

This analysis hinges on the wormhole gain dependence on:
1) Properties of the two sensors, such as similarity and

complementarity.
2) Properties of the two operating domains.

On the other hand, we do not consider the impact of:
1) Finite sample size; we assume to have enough samples to

replace the sample average with the expected value.
2) The capability of the learning algorithms and architecture to

approximate the function minimizing a given cost function.
We thus assume that we can optimize over the real families
from which the samples originate.

A. Formalization of the WHL steps
We refer to the main sensor as “sensor 1” (the RGB sensor

in the experiments) and to the auxiliary sensor as “sensor 2”
(IR sensor in the experiments).

Let D be our initial operating envelope, N its expansion,
and D + N their union. With D we denote a dataset and
use the exponent to indicate its domain restriction. Thus, DD

indicates a dataset comprised only of samples from operating
envelope D.

We consider the noumenon of a scene sample and label to
be drawn from an unobservable distribution p(Y,X). Recall
that in practice, we can observe the scene only through its
sensor representation Z. Therefore, similar to [27], the network
approximation is interpreted as a proxy for the posterior
distribution fθ(·) := q(Y|Z, θ). In the following we will
adopt p(·) for the unobservable target distributions, and q(·)
for the observable network approximations distribution.

Following the wormhole learning process in the Bayesian
diagram of Fig. 5, we begin with a detector parametrized by
θD
1 trained on the initial dataset DD (A1 in Fig. 5). Employing

the cross-entropy error H(p, q) as the standard cost function
for the learning process, we obtain the learned parameters
minimizing the loss over the dataset in domain D:

θD
1 = argmin

θ
EDDH (pY(Y|X), qθ(Y|Z1)) . (1)

As pointed out in [27], the cross-entropy can be de-
composed into a sum of terms that individually gauge the



information we can learn about the underlying distribution.
Loosely speaking, how well fθD

1
resembles p(Y|X) depends

on the finite network capacity, the information contained in
the dataset, and the optimization process adopted to find θ.
In our case, also the sensor representation affects the ability
to learn p, since Z might not correlate with the task (see
Definition 1).

The first wormhole step considers the sensor domain
transfer (B1 in Fig. 5). The initial detector acts as “teacher”
for the new sensor representation and we find ψD

2 as

ψD
2 = argmin

ψ
EDDH

(
qθD

1
(Y|Z1), qψ(Y|Z2)

)
. (2)

Subsequently we exploit the new detector fψD
2

on the second
operating domain N (A2 in Fig. 5).

In the second and last step we apply domain transfer to
return to the main sensor exploiting samples also from the
second operating domain. Thus the final detector parameters
θD+N
1 minimize the sum of two terms; first the initial cross

entropy with the given labels on domain D, and second trying
to copy the second sensor on domain N:

θD+N
1 = argmin

θ
EDDH (pY(Y|X), qθ(Y|Z1)) +

EDNH
(
qψD

2
(Y|Z2), qθ(Y|Z1)

)
.

(3)

B. Wormhole gain

Hence, for main sensor 1 we define the wormhole gain
(WGD→N

1→2 ) of a detector parametrized by θD+N with respect
to an initial detector θD as WGD→N

1→2

= EDD+N

[
H
(
pY, qθD

1
(Y|Z1)

)
−H

(
pY, qθD+N

1
(Y|Z1)

)]
(4)

Before showing some limit cases, we give an intuitive
interpretation of the wormhole gain expression. For a given
dataset, consider an empirical estimate of the wormhole gain,
then from (4) we arrive at

W̃G =
∑

(y,x)∈DD+N

pY(y|x) log

(
qθD+N

1
(y|z1)

qθD
1
(y|z1)

)
. (5)

Hence, the gain is W̃G(k) > 0 iff the final distribution is closer
to the true label distribution than the original distribution.

C. Limit cases

Lemma 1. If the initial domain is the same as the final
domain, WHL learning does not improve performance. If
DD = DD+N then WG ≤ 0.

Proof. By construction of (1) we know that θD
1 achieves the

minimum for the first term in (4) because DD = DD+N. Since
both terms are non-negative, the wormhole gain is at most
zero. Given that θD+N

1 as determined in (3) can at best be
equal to θD

1 , the wormhole gain is smaller or equal to zero
WG ≤ 0.

For the following we define a measure of sensor similarity.

Definition 2. The similarity index J12 is defined as:

J1,2 =
I(Z1; Z2)

H(Z1,Z2)
.

Note that J1,2 (for "Jaccard") is between 0 and 1; J1,2 = 0
means that the sensors are completely “orthogonal”, and
J1,2 = 1 means that the sensors convey exactly the same
information, though perhaps represented differently.

Lemma 2. If the two sensors are equivalent (J1,2 = 1) and
the families of conditional distributions indexed by θ and ψ
are equivalent, in the sense that we can put them in a 1-to-1
correspondence, then the wormhole gain WG is 0.

Proof. J1,2 = 1 implies that the value of Z1 is fully
determined by Z2. With the assumptions above, following
(2) we have qψD

2
= qθD

1
since this choice minimizes the

cross entropy error to zero. Continuing, the second row of
(3) is equivalent to (2) and thus zero since both sensors are
equivalent. Hence the only way to minimize (3) is to pick
θD+N
1 = θD

1 making the wormhole gain zero.

Note that in the finite case we would overfit to noisy
labels which would lead to WG ≤ 0 for similar arguments to
Lemma 1.

Lemma 3. If the two sensors are “orthogonal” (J(Z1; Z2) =
0) then the wormhole gain WG is 0.

Proof. From the "orthogonality" assumption (i) and the
data processing inequality (ii) we can deduce that 0

(i)
=

I(Z1,Z2)
(ii)
≥ I(Y1,Z2)

(ii)
≥ I(Y1,Y2) = 0. Since the output

label distributions do not share information, the second term
in (3) is independent of the choice of theta. Hence, (3) is
again minimized by θD+N

1 = θD
1 .

Once more, similar to Lemma 2, WG ≤ 0 if we drop our
idealistic assumptions.

From the previous two lemmas, we have seen that for
wormhole learning to be useful, the sensors should be different
but not too different.

VI. CONCLUSION

We introduced Wormhole Learning as a novel way of
leveraging the link between a main and an auxiliary sensor
to enlarge the operating domain of the former via semi-
supervised learning, providing a simple way of generating
"unlimited" labeled data. Crucially, we showed that invariance
to undesired changes in data of the auxiliary sensor can be
utilized to improve learning outcomes for the first sensor.
Through information theoretic analysis of the interplay of the
sensors, we offer an understanding of how the characteristics
of one type of sensor are related to another and investigated
their effect on wormhole gain WG. We hope that this will
contribute to understanding how heterogeneous sensors relate
to each other and advance our insight into how such data
may best be put to use.
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